Vidita Vaidya Gets Into Your Head

WHO? Vidita Vaidya WHAT? Neuroscientist WHERE? Tata Institute of Fundamental Research, Mumbai Reported by Nandita Jayaraj “So Vidita, what is it about a life in science that excites you the most?” “You know that transient moment when you find something that, in that moment, you’re the only one in the world who knows? This feeling […]
By | Published on May 30, 2016

IMAG5905

WHO? Vidita Vaidya
WHAT? Neuroscientist
WHERE? Tata Institute of Fundamental Research, Mumbai

Reported by Nandita Jayaraj

“So Vidita, what is it about a life in science that excites you the most?”

“You know that transient moment when you find something that, in that moment, you’re the only one in the world who knows? This feeling is addictive.”

inside-out-hero.png

‘Inside Out’, the movie

 

Joy, Sadness, Fear, Anger and Disgust, these emotions were given lives and personalities of their own in last year’s Disney Pixar animation movie Inside Out. These emotions resided in the mind of a young girl and their story got us thinking about the circuits inside our brain. Vidita Vaidya’s lab at TIFR, Mumbai comes as close as possible to a real life Inside Out.

Centuries of studies into the brain have given us a clear picture of how the brain coordinates movement, bodily functions and even the mechanics of how we perceive sensations like pain and sight. However, the network of brain circuits that regulates emotional response is still an enigma, says Vidita. “We have a reasonable understanding of the negative spectrum of emotions like fear and stress responses, but we don’t know much about the positive side: What regulates joy? Where is our sense of resilience? Optimism? And all of these are clearly regulated by our brain,” says Vidita, whose lab at TIFR is one of the only in India to explore these complex questions.  

Vidita concedes that we may never reach a time where we fully grasp the entire mechanical working of the brain – so dynamic is the organ – but the field is advancing at such a rapid pace that it is only a matter of time before we understand several more specific aspects. For example, she says, “We would at least understand which brain circuits make us vulnerable or resilient to stress. Often, even two individuals who are genetically identical may have very different emotional responses.” Vidita explained that this is partly because environmental or epigenetic factors like lived experience are talking to the circuitry constantly.

Figuring out why antidepressants don’t work

Similarly, soon we may understand why antidepressants take months and months to work and sometimes don’t work at all. This is a serious issue around the world, Vidita informs me. “Imagine a doctor prescribing you medication and telling you to wait for six weeks before knowing whether it will work. Unfortunately, that’s the reality currently. One-third of patients with severe clinical depression don’t respond to any drugs out there. The worst part is you cannot predict` who’s going to be treatment-resistant till they become treatment-resistant.”

Why does this happen? Because most such drugs work by elevating levels of norepinephrine and serotonin in the brain. Both these hormones have multiple receptors, of which we only want to target a few. Vidita broke it down for me: “You’re throwing a ball aiming for one of 10 sticks. Sure, it’ll hit the right stick, but in the process, the ball knocks down other sticks too. So you will get the desired effect but you will get a bunch of other effects also. Now if some of the side-effects end up counteracting the desired one, it takes that much longer for the drug to work. This is what we discovered.”

All her laboratory experiments are done on mice and rats. While we must not take for granted that things would work identically in humans, Vidita says the rodents make for fairly good models despite their smaller brains, as the neural circuits are fairly conserved across species in evolution. Not to mention all the mood-regulating drugs in the market today were originally tested on rodents, she points out. “Obviously, the ideal closest analog would be primates, but you can’t do these kinds experiments on primates.”

But how do you tell if a mouse is disgusted, or sad or angry? You can’t, says Vidita, but what you can do is monitor their behaviour after genetically altering one or more networks, or exposing them to environmental stress factors. “In their early life, their major interaction is with their mother. We can change the nature of that interaction, alter the mother’s care for the pup, etc.” For example, a mouse pup is put under a much higher level of maternal care than usual, or is deprived of the usual care from the mother and the changes in behaviour are recorded.

When the wounds remain

These kinds of experiments are designed to probe into a particularly critical stage in life called the early window. In humans, this lasts from the time spent in the womb up to about 12 years of age. “We have a strong feeling that that this initial period of time is critical in determining how your brain is going to be wired up for emotional responses in adult,” says Vidita. This is the time when a lot of neural connections get consolidated and others get eliminated based on which ones you use more often. “If you have a series of traumatic experiences in early life, it’s very likely they will leave consequences within your brain. We’re very interested in those consequences, in particular, because they tend to be very long-lasting. This is not so with trauma in adults.”

Vidita finds it fascinating how we all develop such unique circuitry, and consequently, such different ways of responding to trauma, despite sharing an identical brain architecture. “It’s like this,” she explains. “In the beginning, an architect designs all the flats in a building identically. But after people start living in them, the homes will look extremely different because they bring in their own personal flavour. Similarly, genetically, our brains are designed on a blueprint, we all have prefrontal cortex in the same place, and yet in the micro details we vary.”

A study from her lab showed proof of this. “We showed that when you have traumatic events happen in the early window of life you actually show aging-related effects two years down the road. The ability of hippocampus (a part of the brain) to make new neurons drops abnormally in trauma. “This tells us that if there is a traumatic early event, you may not see effects right away but there are effects down the road waiting for you.”

Worried, yet hopeful

These findings have Vidita worried about the youth of our country. “I look at us as a country and we are a young country with a huge potential of youth,” she says. “But it seems to me that there are no-brainer things the country needs to do: nutrition, education & healthcare.”

She’s talking about the huge population of under-15-year-olds who, without these basic amenities, are not well-equipped to deal with the trauma they may face and will carry the scars of for the rest of their lives. “If we don’t fix this, it doesn’t matter what huge infrastructure development happens because the base of our pyramid cannot change their lives.”

kids.jpg

Credit: Sumanth Garakarajula/Wikimedia Commons

Nevertheless, Vidita is not bogged down by the realities that her science faces her with because the same science suggests that this situation need not be irreversible. “I have great faith in the brain as a plastic structure – it a has a great capacity for change. We can harness this for the generation of people who have been possibly nutritionally-deprived or faced adversity. I know my work is multiple steps removed from that in terms of application but in terms of fundamentals it gives us a handle of the circuits in the brain.”

India as a neuroscience destination

Needless to say, in spite of all the fuzziness – because many of the phenomena she studies are difficult to define – Vidita is highly enthusiastic about neuroscience as a research option for young biologists. Even within India, there are several options today, she says, naming off the top of her head NCBS, IISc, NBRC (Gurgaon), IISER (Pune), IIT (Kanpur), and of course TIFR. But it depends on the area they want to research, she adds. “Some areas may be better studied abroad, but the students need to come back, I hope they do. We need to build our tribe, it’s too small a community for such a large country.”

For Vidita, who joined TIFR as a Principal Investigator at just 29 years old, settling down in India was always the plan. She was able to do this earlier than most of her contemporaries probably because the brain caught her fancy right at the beginning. By the time she completed her bachelor’s degree in biochemistry at Xavier’s in Mumbai, she more or less knew that’s what she wanted to study. Having identified her broad area of interest at such an early stage enabled her to approach the next few years constructively. She completed her master’s and PhD at Yale University and two stints at labs in Stockholm and Oxford before she came back to her hometown Mumbai in 2000. She freely admits that there were challenges, as expected. She recalls the weeks of paperwork that she and fellow recent neuroscientist joinee Shubha Tole had to complete while setting up the institute’s first animal house and importing the transgenic mice.

[gss ids=”984,983,982″]

None of this deterred her. “In India, there is an element of being the pioneer. There’s lots of jugaad involved and I liked that.” The best part for Vidita is the inadvertent freedom. It slows you down in certain ways but because you’re a little bit distant from the rest of the crew – you can do a meandered walk into an area, you don’t have to move with the mainstream. I find that these meandering walks sometimes takes you to the most exciting places!”

On being privileged and ‘manels

Vidita counts herself among the tiny percentage of women who are privileged enough to not have been exposed to gender bias in their lives. Her mother, being a doctor, was a live example of how it was possible for a career woman to balance workloads. “My spouse and me divide the workload 50-50, whether it’s child or homecare. When that is not the case it’s real tough. We’re not superhuman. I take it for granted but I don’t know if I could do what I do without this kind of support.”

On the institutional front, however, Vidita acknowledges that much needs to be done to keep women in science. “Let’s say you organise a conference and you have only men speakers. Young graduate students watching this see ten men on the podium. You’re sending a message that you couldn’t find one woman, and then you say ‘oh but there just aren’t women, so we couldn’t find them’, well then there’s something wrong here,” says Vidita irritatedly.

[Read this great The Ladies Finger article on all-male panels or ‘manelshere]

“You can’t use this meritocracy debate! Are you telling me genetically we are incapable? Clearly not. “The brain is clearly capable of performing irrespective of gender. I think it’s reflective of the patriarchal society. It’s not true to think that science is not patriarchal because science is practised by people and people are conditioned that way.”

What Vidita feels matters is being conscious of these problems and the willingness to listen and realise that there is a missing 50% of the population. “That’s bad for science. You’ve wiped out the possibility of having a representation from all communities or caste or gender or race.”

‘Outreach is a scientist’s moral responsibility’

“I think everyone should publish (research papers). I think results (of studies) should be accessible to the paying public since it’s their tax money that paid for it. Science should be accessible to them. I’m a big believer in open-access. Information should be available to the community, not owned by consortia. We need to examine these questions.

But dissemination through publication is not enough as they are accessed only by a small subcommunity of other scientists, not to people who do not know the jargon. Talk to students, talk to kids, talk to older people – talk to people, period. I think outreach must be required of every single scientists who uses a taxpayer rupee. I do as much as I can – I always accept invitations to go give talks at schools, I attend Chai & Why sessions, Inspire camps. Outreach should be part and parcel of your process of doing science. If not, the danger is a widening gulf between the public and science. This is not good.

Watch Vidita’s TedX talk below.

[youtube https://www.youtube.com/watch?v=N2RBNvOILNE&w=560&h=315]

About the author(s)

4 responses to "Vidita Vaidya Gets Into Your Head"

    shweta says:

    very inspiring interview.

    sweetha says:

    your speech is very inspiring for women but this is not enough for girls and women we need some miracle in world . some women are very affaired in life to do some thing in correct time but they may miss the chance ,that they cannot do again by that they may suffer a lot in future .the main reason is they don’t have proper support form they elders and friends . we have a million of women in world who are facing this problem ,can’t science help this women beihg a women you can’t do this for women develop the science in other ways, were the unlucky girls can become lucky always invent a medicine for that unlucky women , by that they again go in to past they makes their life .give a meaningful life develop the science in this way to women . being a women i hope you will understand a pain of women make their life beautiful please its a request from all the suffering women behalf of me

    REPLY

Leave a Reply

Your email address will not be published. Required fields are marked *